
PLE
Jordy
Lara

Se define como movimiento circular aquél cuya trayectoria es una circunferencia.
El movimiento circular del piñón se transforma en movimiento lineal en la cremallera.
El movimiento circular, llamado también curvilíneo, es otro tipo de movimiento sencillo.
Estamos rodeados por objetos que describen movimientos circulares: un disco compacto durante su reproducción en el equipo de música, las manecillas de un reloj o las ruedas de una motocicleta son ejemplos de movimientos circulares; es decir, de cuerpos que se mueven describiendo una circunferencia.
A veces el movimiento circular no es completo: cuando un coche o cualquier otro vehículo toma una curva realiza un movimiento circular, aunque nunca gira los 360º de la circunferencia.
La experiencia nos dice que todo aquello da vueltas tiene movimiento circular. Si lo que gira da siempre el mismo número de vueltas por segundo, decimos que posee movimiento circular uniforme (MCU).
Ejemplos de cosas que se mueven con movimiento circular uniforme hay muchos:
La tierra es uno de ellos. Siempre da una vuelta sobre su eje cada 24 horas. También gira alrededor del sol y da una vuelta cada 365 días. Un ventilador, un lavarropas o los viejos tocadiscos, la rueda de un auto que viaja con velocidad constante, son otros tantos ejemplos.
Pero no debemos olvidar que también hay objetos que giran con movimiento circular variado, ya sea acelerado o decelerado.

MOVIMIENTO CIRCULAR
El movimiento circular en magnitudes angulares
La descripción de un movimiento circular puede hacerse bien en función de magnitudes lineales ignorando la forma de la trayectoria (y tendremos velocidad y aceleración tangenciales), o bien en función de magnitudes angulares (y tendremos velocidad y aceleración angulares). Ambas descripciones están relacionadas entre sí mediante el valor del radio de la circunferencia trayectoria.
Al trabajar con magnitudes angulares es imprescindible entender lo relativo a una unidad de medida angular conocida como radián.
El radián
Si tenemos un ángulo cualquiera y queremos saber cuánto mide, tomamos un transportador y lo medimos. Esto nos da el ángulo medido en grados. Este método viene de dividir la circunferencia en 360º, y se denomina sexagesimal.
(Para usar la calculadora en grados hay que ponerla en DEG, Degrees, que quiere decir grados en inglés).
El sistema de grados sexagesimales es una manera de medir ángulos, pero hay otros métodos, y uno de ellos es usando radianes.
Ahora veamos el asunto de medir los ángulos pero en radianes.
Para medir un ángulo en radianes se mide el largo del arco (s) abarcado por el ángulo θ de la figura a la izquierda. Esto se puede hacer con un centímetro, con un hilito o con lo que sea. También se mide el radio del círculo.

Para obtener el valor del ángulo (θ) en radianes usamos la fórmula:
y tenemos el ángulo medido en radianes
Hacer la división del arco sobre radio significa ver cuántas veces entra el radio en el arco. Como el radio y el arco deben medirse en la misma unidad, el radián resulta ser un número sin unidades.
Esto significa que el valor del ángulo en radianes solo me indica cuántas veces entra el radio en el arco. Por ejemplo, si el ángulo θ mide 3 radianes, eso significa que el radio entra 3 veces en el arco abarcado por ese ángulo.
Su quisiéramos calcular o conocer al valor del arco, hacemos:


Podemos imaginar, como ejemplo, que se tiene una piedra amarrada a una cuerda y la movemos en círculos de radio r. En un instante de tiempo t el móvil (en nuestro caso la piedra) se encuentra en el punto P. Su posición angular (lo que la piedra ha recorrido en la circunferencia) viene dada por el ángulo θ, formado por el punto P, el centro de la circunferencia C y el origen O (desde donde empezó a girar la piedra).
Ángulo θ con centro en C.
El movimiento circular del piñón se transforma en movimiento lineal en la cremallera.
La velocidad angular (ω)
Cuando un objeto se mueve en una circunferencia, llevará una velocidad, ya que recorre un espacio, pero también recorre un ángulo.
Para tener una idea de la rapidez con que algo se está moviendo con movimiento circular, se ha definido la velocidad angular (ω) como el número de vueltas que da el cuerpo por unidad de tiempo.
Si un cuerpo tiene gran velocidad angular quiere decir que da muchas vueltas por segundo.
De manera sencilla: en el movimiento circular la velocidad angular está dada por la cantidad de vueltas que un cuerpo da por segundo.
Otra manera de decir lo mismo sería: en el movimiento circular la velocidad angular está dada por el ángulo recorrido (θ) dividido por unidad de tiempo. El resultado está en grados por segundo o en rad por segundo.



ω = velocidad angular en rad/seg.
θ = desplazamiento angular en rad.
t = tiempo en segundos en que se efectuó el desplazamiento angular.
La velocidad angular también se puede determinar si sabemos el tiempo que tarda en dar una vuelta completa o periodo (T):

Como entonces


Aparte de la velocidad angular, también es posible definir la velocidad lineal de un móvil que se desplaza en círculo.
Por ejemplo, imaginemos un disco que gira. Sobre el borde del disco hay un punto que da vueltas con movimiento circular uniforme.
Ese punto tiene siempre una velocidad lineal que es tangente a la trayectoria. Esa velocidad se llama velocidad tangencial.
Para calcular la velocidad tangencial hacemos: espacio recorrido sobre la circunferencia (o arco recorrido) dividido por el tiempo empleado, que expresamos con la fórmula:


Posición angular (θ)
La velocidad tangencial (v)
pero como entonces que se lee velocidad tangencial es
igual a velocidad angular multiplicada por el radio.



La aceleración en los movimientos curvilíneos
En los movimientos curvilíneos o circulares la dirección cambia a cada instante. Y debemos recordar que la velocidad considerada como vectorv podrá variar (acelerar o decelerar) cuando varíe sólo su dirección, sólo su módulo o, en el caso más general, cuando varíen ambos.

Las ruedas se mueven con movimiento circular.
Aceleración centrípeta
Cuando se estudió la aceleración en el movimiento rectilíneo, dijimos que ella no era más que el cambio constante que experimentaba la velocidad por unidad de tiempo. En este caso, la velocidad cambiaba únicamente en valor numérico (su módulo o rapidez), no así en dirección.
Ahora bien, cuando el móvil o la partícula realiza un movimiento circular uniforme, es lógico pensar que en cada punto el valor numérico de la velocidad (su módulo) es el mismo, en cambio es fácil darse cuenta de que la dirección del vector velocidad va cambiando a cada instante.
La variación de dirección del vector lineal origina una aceleración que llamaremos aceleración centrípeta. Esta aceleración tiene la dirección del radio y apunta siempre hacia el centro de la circunferencia.

Como deberíamos saber, cuando hay un cambio en alguno de los componentes del vector velocidad tiene que haber unaaceleración. En el caso del movimiento circular esa aceleración se llama centrípeta, y lo que la provoca es el cambio de dirección del vector velocidad angular.
El vector velocidad tangencial cambia de dirección y eso provoca la aparición de una aceleración que se llama aceleración centrípeta, que apunta siempre hacia el centro.
La aceleración centrípeta se calcula por cualquiera de las siguientes dos maneras:

Aceleración angular

Tal como el movimiento lineal o rectilíneo, el movimiento circular puede ser uniforme o acelerado. La rapidez de rotación puede aumentar o disminuir bajo la influencia de un momento de torsión resultante.
La aceleración angular (α) se define como la variación de la velocidad angular con respecto al tiempo y está dada por:

donde:
α = aceleración angular final en rad/ s2
ωf = velocidad angular final en rad/s
ωi = velocidad angular inicial en rad/s
t = tiempo transcurrido en seg
Una forma más útil de la ecuación anterior es:
ωf = ωi + α t
Aceleración tangencial
Imaginemos de nuevo un disco que gira. Sobre el borde del disco hay un punto que da vueltas con movimiento circular acelerado.
Ese punto tiene siempre una velocidad variada que es tangente a la trayectoria. Esa variación de velocidad se llama aceleración tangencial.
Es la aceleración que representa un cambio en la velocidad lineal, y se expresa con la fórmula


Donde
α = valor de la aceleración angular en rad/s2
r = radio de la circunferencia en metros (m)
Entonces, la aceleración tangencial es igual al producto de la aceleración angular por el radio.
Otras fórmulas usadas en el movimiento circular
Vimos que la velocidad angular (ω) es igual al ángulo recorrido dividido por el tiempo empleado. Cuando el tiempo empleado sea justo un período (T), el ángulo recorrido será 2 pi (igual a una vuelta).
Entonces podemos calcular la velocidad angular (ω) como:

Pero como , esta misma fórmula se puede poner como:

